
AO-A113 091 KENTUCKY UNIV LEXINGTON DEPT OF MECHANICAL ENGINEERING F/6 20/4
VORTEX BREAKDOWN AND XNSTABILITY.(U)
SEP 82 S N SINGH AFOSR-61-OL46

UNCLASSIFIED AFOSR-TR-82-O211 NL

.... f ll

E ND



11 1 ; 1122 25~
L3

IIIII8111"2---5 I -u1112-0
.2 , 1 1 8.1.8

Al ~ ~~~ M I' k)JP kI I!iIN I I 'I (I fA I



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)_

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AFC3R.MT. 8 2 -0 2 1 4 /
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

., ,,FINAL

'VORTEX BREAKDOWN AND INSTABILITY I MAR 81 30 SEP 81
S. PERFORMING OG. REPORT NUMBER

7. AUTHOR(s) I. CONTRACT OR GRANT NUMBERfs)

SHIVA N SINGH AFOSR-81-0146

9. PERFORMING ORGANIZATION NAME AND ADDRESS S0. PROGRAM ELEMENT. PROJECT, TASO(

AREA & WORK UNIT NUMBERS

UNIVERSITY OF KENTUCKY
DEPT OF MECHANICAL ENGINEERING 61102F

1111111 LEXINGTON, KY 40506 2307/D9
II. CONTROLLING OFFICE NAME AND ADDRESS

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH/NA __.___.__. __, _____--

BOLLING AIR FORCE BASE, DC 20332 13. NUMBER OF PAGES

14. MONITORING AGENCY NAME & ADORESS(I( different from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED

ISa. DECL ASSI FICATION/ DOWNGRADING
r-4 SCHEDULE

~ 16. DISTRIBUTION STATEMENT (of tiis Report)

# Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered fin Bock 20, if dillort firom Report)

IS. SUPPLEMENTARY NOTES

to. KEY WORDS (ofltilnue on revere side it necesewy and Identify by block number)"*"i " -- APR 0 7 1982
~' VORTEX BREAKDOWN .AR798

1, DELTA WING W
RICHARDSON NUMBER

LLJW STABILITY
__. 20. ABSTRACT fCertinue an revere* esi It neceecery and Identify by block number)

LA. Solutions of the full steady asixymmetric Navier-Stokes equations for break-

4 " ' down in an unconfined viscous vortex have been obtained by Grabowski and Berger.

The core Reynolds numbers were varied up to 200 and a two-parameter family of

- velocity distributions was assumed upstream as the boundary condition. In this

report, the Richardson numbers corresponding to the developling solution profiles

of Grabowski and Berger are calculated and shown graphically. The inviscid

linear stability of the swirling velocity profiles as calculated by Grabowski

I FODD RMI 7 1473 9DITION OF I NOV 6 IS OBSOLETE / /
SECURIJN UNCLASSIFI D' SECURIT*Y CLASSIFICATION OF THIS PACE (1R1hp Dot; Fnt~red)



UNCLASSIFIED
C7JRITY CLASS1VCAT1VON OP THIS PAGI(W7saf Data Ensil;d)

and Berger is investigated with respect to non-axisymmetric disturbances. This
eigen-vaiue problem is solved numerically for various wave numbers and it is
shown that the developing velocity profiles lead to instability. These results
are believed to be useful in analyzing instabilities for a trailing vortex
from an aircraft.

Acesin o

.X'IS4&

i4CT '

AV9i11abilitY Codes

- Avail and/or

UNCLASSIFIED
SECUR~ITY CLASSVCAT101 OR Iv'a5WP.. fl0to F.-



AFOSR-TR. 8 2 -0 2 14

THE AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

FINAL REPORT

VORTEX BREAKDOWN AND INSTABILITY

Prepared By: Dr. Shiva N. Singh

Academic Rank: Associate Professor

Department and Department of Mechanical Engineering
University: University of Kentucky

Period Covered: March 1, to September 30, 1982

Grant Number: AFOSR-81-0146

1w

f

Approved for publie roleaseg
distribution unlimited.

82 04 06 033



Abstract

Solutions of the full steady axisymmetric Navier-Stokes equations

for breakdown in an unconfined viscous vortex have been obtained by

Grabowski and Berger. The core Reynolds numbers were varied up to 200

and a two-parameter family of velocity distributions was assumed upstream

as the boundary condition. In this -report, the Richardson numbers

corresponding to the developing solution profiles of Grabowski and Berger

are calculated and shown graphically. The inviscid linear stability of

the swirling velocity profiles as calculated by Grabowski and

Berger is investigated with respect to non-axisymmetric disturbances.

This eigen-value problem is solved numerically for various wave numbers

and it is shown that the developing velocity profiles lead to instability.

These results are believed to be useful in analyzing instabilities for

a trailing vortex from an aircraft.
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Introduction

Vortex flows are encountered on the fore-bodies of aircraft at high

angles of attack that suddenly become assymetrical thereby causing depar-

ture into spin. Vortex bursting can occur suddenly decreasing the lift and

2producing adverse results . A great deal of potential hazard is associated

with the wake turbulent behind an aircraft. This happens due to the per-

sistence of a trailing vortex system in the wake of a vehicle. Another

aircraft flying into this vortex system can experience large perturbations

in flight path leading to possible loss in pilot control of this vehicle.

The problem of vortex breakdown occuring over delta wings at large angles

of attack and in axisymmetric swirling flows in circular pipes has been

extensively studied in the past. A number of survey articles has been

written on the subject (see Hall 17 18 , Leibovich 19, Singh and Hankey201.

All the experimental observations indicate that two dimensionless

parameters govern the occurence of vortex breakdown both over delta wings

and for swirling flows through tubes: (1) the Reynolds number W srs/v and

(2) the circulatior number q/Wsr s where Ws and q are the axial velocity

and circulation at large radius rs respectively in cylindrical coordinate

system (r,S,z). v is the kinematic viscosity and r5 is the characteristic

length. When the fluid flows past a lifting wing it produces trailing

vorticity which at some distance downstream concentrates into two trailing

line vortrices. A characteristic feature of a steady trailing line vortex

is the existence of strong axial currents near the axis of symmetry. The

link between the azimuthal and the axial velocity components in vortices

is provided by the pressure; the radial pressure.t
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gradient balances the centrifugal force, and any change in the azimuthal

motion in the axial direction downstream produces an axial pressure gra-

dient and consequently axial acceleration. The expression of the velocity

distribution for the steady axisymmetric trailing line vortices in cylin-

drical coordinates (r,Oz) is obtained -as

v(r) = q[l-exp(-Br 2)]/r (1)

w(r) = W1 + Ws exp(-Or
2  (2)

where v and w are the swirl and axial velocity components. The parameters

q, B and Ws vary slowly with axial distance z. The swirl velocity v given

by (1) resembles a solid-body rotation near the axis z a 0 and represents

the line-vortex flow away from the axis. The axial velocity w(r) gives the

axially-symmetric jet and wake like velocity distribution for a certain com-

bination of W1 and Ws.

The full Navier-Stokes equations have been numerically integrated by

4 51
Lavan, Nielsen and Fejer , Kopecky and Torrance and Grabowski and Berger

All three sets of investigators assumed the flow to be incompressible and

axisymmetric. The initial profiles, imposed at the junction z = o were

special cases of (1) and (2) and then the numerical solution was obtained

for z > o, covering a range of Reynolds numbers from four to several hundred.

Lavan et al.4 treated low-Reynolds-number flow passing from a rigidly rotating

circular pipe into a stationary pipe of the same diameter. Thus they dealt

with a geometry and a Reynolds number range very different from those in vortex

* breakdown experiments. On the otherhand, Kopecky and Torrance5 considered a

more realistic situation resembling to those of vortex breakdown experiments

in a tube, concerning the geometry, initial conditions and the range of

Reynolds number. Calculations performed by Grabowski and Berger in an un-

confined region are more extensive and have greater resolution than those of

&NEWNAN



Kopecky and Torrance. Their solutions exhibit many of the characteristics

of vortex breakdown. Taken together the last two results are of great

importance to the determination of internal structure in the breakdown

region. And the numerical experiments convincingly demonstrate that the

Navier-Stokes equations do indeed have solutions with embedded regions of

closed stream surfaces which resemble the axisymmetric bubble form of the

vortex breakdown.

It is possible that the vortex breakdown may occur from an instability

of the mean flow. The inviscid criterion for stability of rotating flows

due to axisymmetric disturbances was first derived by Rayleigh6 . In fact,

the "Rayleigh criterion" (d/dr)(rv) 2>o is shown to be sufficient for stability

7 8even with viscosity by Synge . Howard and Gupta have shown that for given

mean axial velocity w(r) and swirl velocity v(r), stability of the basic flow

to axisymmetric disturbances is guaranteed if the Richardson number criterion

r 3(dw/dr) 2[d(vr) 2/dr] > 0.2S is satisfied. Many other investigators have

studied the stability of vortex flows. The stability of a pair of trailing

9vortices during the early growth stage has been analyzed by Crow . Both

symmetric and antisy~metric eigenmodes were shown to be unstable. Widnall

10and Bliss studied the motion and stability of a vortex filament containing

an axial flow in the limit of slender-body theory. Stability of a rotating

axisymmetric jet surrounded by a potential vortex to infinitesimal distur-

bances in the inviscid incompressible fluid approximation was considered by

Uberoi, Chow and Narain 11 in the approximation of long and short wavelengths.

Lessen, Deshpande and Hadji-Ohanes12 analyzed the stability of a potential

vortex with a rotating and non-rotating jet core and showed that the poten-

Itial vortex becomes unstable in the presence of a jet. The stability of swir-

ling flows with mean velocity profiles given by (1) and (2) for a trailing

vortex from an aircraft has been studied by Lessen, Singh and Paillet
1 3
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and Lessen and Paillet 14 both for inviscid and viscous theory with respect

to infinitesimal non-axisymmetric disturbances (with normal modes given

by exp[i(az+n8-act)1. It is found that in both cases the parameter q governs

the stability. Flows are stable to axisymmetric disturbances provided

q > 0.4, which always seems to be the case in experiments leading to vortex

breakdown. For non-axisymmetric disturbances, stability is assured if

q > 1.5 while instability is obtained for small values. The experiment

performed by Singh and Uberoi1i on trailing tip vortices verifies the

presence of laminar instability modes associated with large axial velocities

in the vortex core region. Garg16 in the experimental study of the struc-

ture of vortex breakdown in a tube observed that fluctuations are somewhat

more regular and more intense in the breakdown region than in the wake, and

are stronger in the bubble form of breakdown than they are in the spiral

form.

In the present study, the inviscid stability of the developing axial

and swirling velocity profiles (as obtained by Grabowski and Berger I) is

investigated. The analysis of Howard and Gupta has shown that all the

vortex flows are stable subject to infinitesimal axisymmetric disturbances

provided the Richardson number J = [(r2 V2) /r3w 2  > 0.25. The Richardson

numbers calculated for the developing profiles of Grabowski and Berger

show that for the most part the above-mentioned condition is satisfied.

That is why only non-axisymmetric disturbances corresponding to n = 1 and

n 1 - 1 (where n is the azimuthal wave number of the Fourier disturbance

of the type expCi(az+n8-act)]) are considered. For various profiles, the

real and imaginary quantities of the complex phase velocity c are numeri-

cally calculated corresponding to the wave number a and these are compared

13with those given by Lessen, Singh and Paillet



Mathematical Analysis

In this section, first the non-dimensional Navier-Stokes equations

in cylindrical coordinates are given. The numerical investigation of

vortex breakdown undertaken by Grabowski and Berger1 is then outlined and

their solutions discussed. And finally the linear inviscid stability

analysis is formulated.

The conservation of mass and momentum equations for an incompressible

flow in terms of cylindrical coordinates (r, 8, z), with corresponding

velocity components (u, v, w) are

1 2(ur) 1 av 2wr + + r (1)r 2r r 8 2z

Du + u v au 'Cu v2  2 + _L u u[72 (2)-c- + r r3 M r-- z r ar Re r2  r2 Z6

v V v v v uv ^ 1D v 2 auZ + + 2 + -.. . .j(3_7_ Tr ra6a r 2  r2

9w awP + v2w  (4)
7F 5T T 7z Re

a2  1 a 1 Z2  ;2

where V2 =- + - -- + - 2+ 2

ar2  r 2r r 2 e Z2

The velocity components have been non-dimensionalized by the free-stream

axial velocity W, lengths by a characteristic core radius 5 , time t by

5/W and pressure by pW2 after subtraction of p. the uniform static pressure

from the vortex. The core Reynolds number is given by R = W6 / V. Con-

ditions that approximate those expected in a real vortex flow have been

applied by Grabowski and Berger at the boundary of a sufficiently large

finite region. At the upstream boundary z - 0, it is
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u(r) = 0 for 0 r. R (5)

v(r) = Vr(2-r 2)

w(r) = 8 + (1 - 8)r 2 (6-8r + 3r 2 ) for 0 .r <1 (6)

v(r) = V/r, and w(r) = 1 for 1 < r < R (7)

At the downstream boundary z = L, 0 < r < R

u 0 V= 0, and =0 (8)

On the axis r = 0, 0 < z < L

u = 0, v = 0 and - =0 (9)

At the radial boundary r = R, 0 . z < L

3(ur) = 0, v = V/R, and w =1. (10)

In the above-mentioned boundary conditions S and V are the two parameters,

V is the specified circumferential velocity at the core edge; it is equal

to the circulation around the core after non-dimensionalization by 2r W .

R and L are much larger than one. The parameter 8 is the ratio of the

axial velocity at the core center to the velocity in the free stream and

uniForm velocity results when a = 1. 8 greater or less than one yields

jet-like or wake-like profiles respectively.

The axisymmetric forms of equations (1) to (4) '/ ' 8 0 ] have been

solved by Grabowski and Berger subject to the conditions (5) to (10) for

V = 0.85, 0-8944, 1.0 and 1-095, Re up to 200 and various values of S.

For Re = 200, S = 1 and V = 1.095, they have shown graphically the stream

function contours and comparison with the axisymmetric bubble followed by

21spiral breakdown (from Sarvkava ) is quite good. This is reproduced in Fig.

1 of this report. Figures 2 and 3 show the axial and swirl velocity profiles

for the same parameters.



-7-

The linear inviscid stability problem of the velocity profiles obtained
1

by Grabowski and Berger as shown in Figs. 2 and 3 is now formulated by

deriving the well-known linearized momentum and continuity perturbation

equations. Let u', v', w, be the radial, azimuthal and axial components of

velocity perturbatior respectively and P', the pressure perturbation. We

can then assume

{u', v', w', p'l} ={i G, H, F, P)(r) exp[i(az - act) + nie] (11)

where a and n are axial and azimuthal wave numbers, c = cr + ic. is ther 1

complex phase velocity and F, G, H and P are the complex amplitudes of

perturbation. If c. < 0, the disturbances die down and for c. > 0, the

perturbation increases without limit and the mean velocity profiles pre-

dict instability. On substitution of (11) into the linearized forms of

equations (1) to (4), we obtain (see Lessen, Singh and Paillet13)

arF + (rG)' + n H = 0 (12)

r2-TG + 2rvH- r2P' = 0 (13)

r2yH + r(rv)' G + nrP = 0 (14)

r2yF + r2 w-G + c2r2P= 0 (15)

In equations (12) to (IS), the coefficients of I/Pe have been taken to be

zero to study the inviscid stability. Primes denote differentiation with

respect to r and

-= a(w - c) + nv/r. (16)

The boundary conditions to integrate (12) to (15) are

G(O) = H(O) = 0, F(O), P(O) finite for n = 0, (17)

G(0) H(O0) = 0, F(0) = P(0) = 0 for n = ±I, (18)

G(0) - H(0) - F(0) = P(0) = 0 for In > 1, (19)

i G(-) = H(®) = F(-) = P(-) = 0 for all n. (20)
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The requirements are that F and P do not depend on e at r = 0 and all the

quantities be finite for all values of r.

For the axisymmetric case n = 0, Howard and Gupta8 derived the

sufficient condition for stability that all the vortex flows are stable

subject to infinitesimal axisymmetric disturbances provided the Richardson

number

J _3 (r 2v2) '/(r 3 w 2 ) > 0.25. (21)

In figures 4 to 8, we have sketched the Richardson number J vs. r for

five velocity profiles v and w of Grabowski and Berger at five plane sections

z = constant, as indicated in figures 2 and 3.

Equations (12) - (1S) can be reduced to two first-order equations, which

are more suitable for numerical integration.

G=- - a2r(ve + v/r)/n I r G - (a2r2  n2)H/rn (22)
'r-

H =-[nv + a(rw + w-c) + 2nv/r] H/y

-E(v + r G]V/r - nG/r (23)

The equations (22) - (23) along with the boundary conditions (17) - (20)

constitute an eigen value problem. As a time wise stability problem, an

attempt will be made to determine c as an eigen value for given values of a

for five profiles v and w. The disturbances are amplified or damped with

time depending upon whether c. > 0 or c. < 0 respectively and c. 0

characterizes neutral disturbances.

4
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Numerical Solution and Results

Lessen, Singh and Paillet 13 have pointed that translation and inver-

sion of the axial velocity profile only affects the frequency and does

not alter the amplification factor c i . That is why in our numerical cal-

culations, the axial velocity w has been replaced by w-1. In this way

the asymptotic nature of both the axial and swirl velocity profiles ob-

tained by Grabowski and Berger for large r is similar those used by Lessen,

Singh and Paillet. The procedure to find the conditions for integrating

equations (22)-(23) has also been discussed by Lessen, Singh and Paillet.

The same procedure is adopted here. For large r (say r = 3)(w - 1) - 0 and

v - V/r, and (12)-(15) reduce to Bessel's equation in F. The solution

valid at large r is the modified Bessel function K (ar). Then G = -F'/%

and H = n Kn(ar)/r, where prime denotes differentiation with respect to r.

Starting with these asymptotic values, the solution of (22) and (23) is ad-

vanced towards r = 0 by numerical integration, and then matched to the

known Frobenius series solution at some fixed radius (say r = 0.2) near

zero.

22Verma, Hankey and Scherr described the numerical Fortran program for

such problems in detail and for the numerical calculations in this paper,

the same program was used. To test the program, we have tried to reproduce

two to three eigen values ci and cr vs a from Lessen, Singh and Paillet's

published results (say Fig. 2). Their results were obtained when the nu-

merical integration is performed starting from r = 3 to r - 0.2 for q - 0.02

and 0.03, a = 0.2, ci = 0.045 and 0.112, and cr = 0.385 and 0.402.

The eigen values obtained for the three velocity profiles corresponding

the various wave numbers a are similar to those calculated by Lessen, Singh
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and Paillet. For the azimuthal wave numbers n = 0 and 1, all the distur-

bances die out just as the results obtained by them for q n 0(1). In

this report we have calculated the eigen values for n = -1 and -2 only.

These are given in Tables 1 and 2 respectively. Thus it is shown that

these profiles are unstable corresponding to the non-axisymmetric distur-

bances. Cases 1, 2 and 3 corresponds to the velocity profiles numbering 2,

3 and 5 respectively in figures 2 and 3.
Table 1

Eigen values for n = -1, V - 1.095, B = 1 and Re = 200

Case 1 Case 2 Case 3
S r  aci  cr c cr CLc i

0.1 0.385 0.056 ........

0.2 0.462 0.074 0.295 0.033 ....

0.3 0.539 0.085 0.378 0.054 0.301 0.023

1 0.4 0.581 0.091 0.425 0.063 0.338 0.041

0.5 0.630 0.093 0.516 0.069 0.395 0.052

0.6 0.661 0.092 0.563 0.070 0.461 0.052

0.7 0.695 0.087 0.620 0.063 0.533 0.045

0.8 0.721 0.073 0.661 0.048 0.596 0.027

0.9 0.778 0.051 0.695 0.020 --

&
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Table 2

Eigen values for n = -2, V = 1.095, 8 = 1 and Re 200

Case 1 Case 2 Case 3

Ciaci. oc i  uci

0.6 0.084 0.072 0.060

0.8 0.118 0.104 0.091

1.0 0.139 0.122 0.111

1.2 0.141 0.129 0.120

1.4 0.135 0.124 0.101

1.6 0.112 0.099 0.075

1.8 0.052 -- --

i

&

t
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LIST OF FIGURES

1. Comparison of the experimentally observed axisymmetric vortex
breakdown by Sarpkaya [1971] and stream function contours traced
by Grabowski and Berger for Re = 200, B = 1, V w 1.095.

2. Profiles of axial velocity component for Re = 200, B = 1, V a 1u09S.

3. Profiles of swirl velocity component for Re - 200, S = I, V = 1,095.

4. Richardson Numbers vs. r for numbered profiles I in Figs. 2 and 3.

S. Richardson Numbers vs. r for numbered profiles 2 in Figs. 2 and 3.

6. Richardson Numbers vs. r for numbered profiles 3 in Figs. 2 and 3.

7. Richardson Numbers vs. r for numbered profiles 4 in Figs. 2 and 3.

8. Richardson Numbers vs. r for numbered profiles 5 in Figs. 2 and 3.
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